All steam turbines have the same basic parts, though there's a lot of variation in how they're arranged.
Rotor and blades
Photo: Steam turbine blades look a bit like propeller blades but are made from high-performance alloys because the steam flowing past is hot, at high pressure, and traveling fast. Photo of a turbine blade exhibited at Think Tank, the science museum in Birmingham, England.
Running through the center of the turbine is a sturdy axle called the rotor, which is what takes power from the turbine to an electricity generator (or whatever else the turbine is driving). The blades are the most important part of a turbine: their design is crucial in capturing as much energy from the steam as possible and converting it into rotational energy by spinning the rotor round. All turbines have a set of rotating blades attached to the rotor and spin it around as steam hits them. The blades and the rotor are completely enclosed in a very sturdy, alloy steel outer case (one capable of withstanding high pressures and temperatures).
Impulse and reaction turbines
In one type of turbine, the rotating blades are shaped like buckets. High-velocity jets of incoming steam from carefully shaped nozzles kick into the buckets, pushing them around with a series of impulses, and bouncing off to the other side at a similar speed but much-reduced pressure (compared to the incoming jet). This design is called an impulse turbine and it's particularly good at extracting energy from high-pressure steam. (The de Laval turbine illustrated up above is an example.)
In an alternative design called a reaction turbine, there's a second set of stationary blades attached to the inside of the turbine case. These help to speed up and direct the steam onto the rotating blades at just the right angle, before it leaves with reduced temperature and pressure but broadly the same speed as it had when it entered.
In both cases, steam expands and gives up some of its energy as it passes through the turbine. In an ideal world, all the heat and kinetic energy lost by the steam would be gained by the turbine and converted into useful kinetic energy (making it spin around). But, of course, the turbine will heat up somewhat, some steam might leak out, and there are various other reasons why turbines (like all other machines) are never 100 percent efficient.
Photo: Impulse and reaction. Left: This Pelton water wheel is an example of an impulse turbine. It spins as high-pressure water jets fire into the buckets around the edge. Steam impulse turbines work a bit like this. Photo courtesy of Wonderferret, published on Flickr under a Creative Commons licence. See more of Wonderferret's photos. Right: A reaction turbine turns when steam hits its curved blades. Photo by Henry Price courtesy of US Department of Energy/National Renewable Energy Laboratory (DOE/NREL).
Other parts
Apart from the rotor and its blades, a turbine also needs some sort of steam inlet (usually a set of nozzles that direct steam onto either the stationary or rotating blades).
Steam turbines also need some form of control mechanism that regulates their speed, so they generate as much or as little power as needed at any particular time. Most steam turbines are in huge power plants driven by enormous furnaces and it's not easy to reduce the amount of heat they produce. On the other hand, the demand (load) on a power plant—how much electricity it needs to make—can vary dramatically and relatively quickly. So steam turbines need to cope with fluctuating output even though their steam input may be relatively constant. The simplest way to regulate the speed is using valves that release some of the steam that would otherwise go through the turbine.
No comments:
Post a Comment